

Transportation Asset Management Systems and Pavement Preservation

Southeast Pavement Preservation/Partnership San Antonio, Texas May 29, 2013

Today's Discussion Topics

- Asset Management Systems Overview
- MAP-21 Influence
- Getting Better Results through Integration
- Pavement Preservation within an AMS Framework
- Improving Analysis through Research
- Taking AMS to the Next Level with Trade-off Analysis

Evolution of Asset Management Systems

- 1970's-80's
 - Mainframe systems
 - Primarily developed for financial purposes, e.g. cost accounting
 - Genesis of Pavement and Bridge Management Systems
 - Creation of Road Inventory Systems for Planning & Reporting
- 1990's
 - Federal legislation requires Pavement and Bridge Systems
 - Typically stand-alone systems
 - Transition to PC's, Windows and Client-Server Systems
- 2000's
 - Promotion of "Asset Management"
 - Expansion of systems within disciplines
 - Web-based platforms
 - GIS/LRS Advancements
 - Enterprise systems

Common SHA Asset Management Systems

- Pavement
- Bridge
- Maintenance
- Safety
- Traffic-Signs, Signals, ITS etc
- Road Inventory
- Fleet & Equipment
- Facilities
- Asset Inventory databases & spreadsheets

Common AMS Data Dependencies

- Financial
- Project Planning and Scheduling
- Construction
- Inventory
- Legacy
- DMV

Asset Management Systems Today

- Perception that Pavement and Bridge Management are mature
- Lots of Data, quality remains an issue
- Increasing Asset Inventories, Asset types
- Assessment Methodologies continue to advance
- Advancement of Analytics
- Disparate systems are still commonplace
- Enterprise approach gaining favor among agencies
- Multiple platforms and databases challenging to support
- MAP 21 is driving the need for integrated systems

MAP-21 Influence

- Required Asset & Performance Management Plans
- Required Agency Performance Measures and Targets
- Agencies must improve or preserve asset conditions and performance
- National Performance Goals, e.g. "State of Good Repair"
- National Highway Performance Program
- New minimum pavement condition requirements for Interstate system
- Recognition of 'Preservation"
- Long Range Plans must reflect agency Performance Plans
- STIP must align with agency Performance Goals
- Trade-Off analytical tools desirable

MAP-21 AMS Implications for SHA's

- Are you achieving the best or optimum performance (LOS) across the network at the current level of funding?
- Are you performing the right mix of activities, projects, strategies to achieve the best long term performance for the network?
- Can you readily determine the level of investment needed across all assets to achieve agency performance targets? Can you conduct trade-off analysis?
- Do you have the capability to perform short and long term scenario analysis ?
- Can you readily meet MAP 21 reporting requirements?

Getting Better Results through Integration

Α S Ρ Y Ρ S R 0 Ε Α Μ C S Н

С

A

S

AGILEASSETS

INTEGRATED TRANSPORTATION ASSET MANAGEMENT SYSTEM (ITAMS)

Transform Data into Information

Learn

Refine

Evaluate

Evaluate

JERI

Nojdə(

Integrated AMS: Vision

- Unified Transportation Plans and Analysis
 - Cross Asset Analysis and Portfolio Management
 - Remove Silos across people, data and strategies
 - Defined dashboards, metrics and outcomes

Big Picture Integration Example

UDOT Information Systems

Integration across Multiple System Platforms

- Consistency of Location data
- Accurate capture of work accomplished
- Consistency of Business Rules/Processes
- Ability to share or view work plans, e.g. viewing PMS work plan in MMS for planning & scheduling

- Interface Requirements & ability to push or pull data
- IT resource requirements for multiple platforms
- Frequency and Impact of Upgrades
- Keeping pace with industry advancements

Integrated Asset Management System Example

Example of Integration between Modules

MMS	PMS	BMS	TradeOff	Resources	System	
Utilities	Setup/Inv	entory	Issue Progres	ss (Complete)	Analysis and Budgets	Reports
laintenan	ce Managei	ment	Maintenance Proje Contract Contract Plan Service Requests Work Request (Se Work Orders (Tas	rvice Request) ks) from	BMS Work Plan	
		,			Preventive Maintenance (PM)
					MMS Work Plan	d by
					Work Requests (Service I	Requests)
					Contract Plan	

Integrated AMS Suite

- Data shared between system modules
- Shared data increases collaboration in achieving common organizational goals and metrics
- Similar look and feel across modules-User experience
- Data imported from external systems into "core"
- Supports more efficient decisions across organization
- Reduced level of IT support due to single platform vs. supporting multiple stand-alone applications
- Common Referencing System (LRS) & standardized handling of LRS updates
- Interfaces required for external systems

Pavement Preservation within an AMS Framework

Source: National Center for Pavement Preservation.

Integrated PMS Framework

Key Pavement Preservation Issues

- Project /Treatment Selection Criteria
 - Decision Trees and Models
- Capturing details of completed Preservation work
 - Maintenance & Contracted work
 - Interfaces
 - Q/A-Q/C of data
 - Business Rules
 - Construction History
- Consideration of Planned Projects
 - "Hardwiring" programmed projects into analysis
- Validating the effectiveness
 - Performance monitoring
 - Determining life extension
- Timing of Treatments
 - Research

Project and Treatment Selection

• Development of Decision Trees that include preservation

Models should Incorporate Preservation Influence

Section Modeling

Analys	sis Da	tabase I	HPMS KPI's	Reports	Setup Utili	ties ITD Help									
nalysis	s > Perfo	rmance Ar SELECT	alysis > Sec COLUMN	ction Perform	lance		SE	LECT MODEL	Default Mo	del IID I	levible/C	omoosita	Surface Co		
SECTIO)N Perfor	mance		Cracking inde	**				Delautino	der-IID-I	IEXIDIE/C	omposite	- Surface co		
< 1	60 >) 🔤 180 pag	es (1973 rows))											
Route *	Directio	on the Lane the	Begin Mile ↔	End Mile 수 PI	47702100	lumber of Lanes Att.	Comments	Date Update	User Update	CAADT	AADT	DVMT	Shoulder T	ype	Left Paved
115	ASC.	All	0	0	17703100	2				1900	9332	37,320	Surfaced wi	th bituminous material	
115	ASC.	All	0	10.104	17703101	2				1000	0930	30,574	Surfaced wi	th bituminous material	
115	ASC.	All	16.184	21.54	17703102	2				1800	8491	22,739	Surfaced wr	th bituminous material	
15	ASC.	All	21.54	25	17703103	2				1800	8400	14,532	Surfaced wr	th bituminous material	
15	Asc.	All	25	30.87	17703104	2				1800	8400	24,654	Surfaced wr	th bituminous material	
15	Asc.	All	30.87	36	17703105	2				1800	8028	20,592	Surfaced with	th bituminous material	
15	Asc.	All	36	39.75	17703106	2				1800	9600	18,000	Surfaced with	th bituminous material	
15	Asc.	All	39.75	46.67	17703107	2				1800	9548	33,036	Surfaced with	th bituminous material	
15	Asc.	All	46.67	54.8	17703108	2				2834	14205	57,743	Surfaced wi	th bituminous material	
15	Asc.	All	54.8	57.4	17703109	2				2900	14311	18,604	Surfaced with	th bituminous material	
15	Asc.	All	57.4	63.203	17703110	2				2900	15855	46,003	Surfaced with	th bituminous material	
Cracking Index		γ	-8	00 • •	-1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- vy	- - & - & & & & & & & & & & & & & & & &	- م	v	- %	-47 -47	Current Da Data Model Prediction	ta E
						Age	(YEAR)								

Getting the Right Data

- Inventory
- Location
- Condition
- Traffic
- Construction History

Construction History Data is Critical

Common Challenges with Construction Data

- Interfaces with PMS typically required
- Data Q/A required, often manually by PMS staff-difficult to automate due to differing business rules and needs

- Construction Management System project location may not align with PMS LRS
- Delay in getting project information from the field
- Pay items in Construction Management System are typically measured in units such as SY or Tons and may not provide layer thickness for Construction history
- ERP Maintenance Management Systems don't generally provide required location data for pavement maintenance and preservation activities
- Preservation work performed by Maintenance not captured at all

Construction History – Data Entry Forms

_					AgileAssets Manag	ement System [TAMS] Version 6.X Build 106
	Fleet Management	Pavement Mgmnt Resource	s Road Maintenance	System		
	Analysis Database	HPMS KPI's Reports Setup	Utilities ITD Help			
2	Database > Construction	> Construction History				
2	Constr. History Sectio	ns as (2 rows)				
Ä.	Contract name	IH015(M(006))	* Key Number		00132	
2	* Year Completion	2011	Sub Base Type		~	
<u>?</u>]	Project Number	IH015-001	* Su The key number o	f a project /8/2011		
\leq	Treatment	RC - 1R Thin Restoration	HPMS Work Code		~	
0	User Update	ERIC	Work Description			Pavement Type
4	Date Update	5/30/2011	HPMS Pavement Type			i uvenient Type
156	IRI Needs CP Adjustment		Approved		×	
l cla	Aggregate Size		Approver	ERIC	K	
oper	Base Type		Approved Date	5/30/2011		
۲	Binder Grade		Reviewed			Manla I listom
	Gyration Level		Reviewer	ERIC		VVORK HIStory
	Interlaver	· · · · · · · · · · · · · · · · · · ·	Review Date	5/26/2011		Information
	Work Code	RC1R1	Att.			mormatori
	Constr. History Sections	s Location		Material Layer Inform	mation	
	esterner 1 Gol > ∞1 page	es (1 rows)	Att liser lindate Date lin	≪ < 1 G0 > ∞1	pages (1 rows)	Date lindate liser lindate Att Comme
	▶ 1015 ▼ Asc. ▼ 1 (0		ERIC 5/26/201	► 1 Asphalt		3 5/30/2011 ERIC
		1				
					\mathbf{N}	
	Locations	Information			N L	ayers Information
						-
	•		Þ	•		

Consideration of Planned Projects

- Incorporation of planned or programmed R&R Capital projects
- Requires interface between PMS and Project Scheduling System
- Projects can be "hardwired' into scenario analysis
- Challenges encountered include:
 - Pavement treatments may be only part of a broader scope and lack sufficient detail
 - Correctly locating planned projects on LRS
 - Planned Pavement Preservation activities may not specifically identify a location or treatment. (Funding Placeholder)

Determining Pavement Preservation Effectiveness

- A PMS can model preservation as one of the tools in the management toolbox
- As time progresses it is important to utilize the data collected in the PMS to refine the models
 - Use the PMS as a source for on-going research
 - Improve deterioration models
 - Better represent preservation improvements
- Investigate the effects of preservation policies and priorities by comparing scenario outputs

Example PMS Scenario Analysis Framework

Scenarios Analysis — Concept

Scenario Analysis Objectives

- Best Set of Projects
 - The projects meet a set of constraints
 - Maximizes or minimizes an objective (Maximize condition, minimize budget, etc.)
- The desired OUTPUT of the analysis is a WORKPLAN, that tells us:
 - Using which treatments to apply, (What)
 - To which sections (Where)
 - In which year (When)

Optimized Work Plans

Analysis Database HPM	3 KPI's Reports Setup Uti	lities ITD Help							
nalysis > Network Analysis >	Optimization Analysis								
etup Results Constr Results	Report								_
Vork Plan Results 1 Go S 37 pages (99)	0 rows)								-
Plan Year 🕆 Budget Group	Treatment	Estimated Cost Ro	ute 🕆 Directi	on 🕆 Lane 🕆	Begin Mile 🕆	End Mile 🕆	Length	MWP Project Status	
1 Preservation - PM	RC - Surface Coat	\$211,200.00 101	5 Asc.	All	36	39.75	3.75	Scenario Recommended	
1 Preservation - 1R	RC - 1R Thin Restoration	\$2,289,408.00 101	5 Asc.	All	46.67	54.8	8.13	Scenario Recommended	
1 Preservation - 1R	RC - 1R Thin Restoration	\$1,658,624.00 01	5 Asc.	All	76.01	81.9	5.89	Scenario Recommended	
1 Restoration	RC - 3R CRABS/RABS	\$1,719,168.00 101	5 Asc.	All	81.9	85.6	3.7	Scenario Recommended	
1 Preservation - PM	RC - Surface Coat	\$191,037.00 101	5 Asc.	All	92.48	95.872	3.392	Scenario Recommended	
1 Preservation - 1R	RC - 1R Thin Restoration	Floating Map							×
1 Preservation - PM	RC - Surface Coat	Мар							4
1 Preservation - 1R	RC - 1R Thin Restoration	Bing Map Tiles	N	Scale: 1:1,69	0,586 🗖 🕰		₹" <u>]</u>		etc
1 Preservation - PM	RC - Surface Coat	Routes	Mod	ore Ho	wal -	Rob	Tho Tho	woods Crossing	D
1 Preservation - 1R	RC - 1R Thin Restoration		X		5		Menan	Rigby Big Hole	r
1 Restoration	RC - 3R CRABS/RABS	Highlighted features	Arcok	Butte City	/		Ĩ Y	Dcon Snake	M
1 Restoration	RC - 3R CRABS/RABS	N		26	20	Idah	e Falls	fona Suga Vollav	
1 Restoration	RC - 3R CRABS/RABS	World Street Map	ers of		Atomic Cit	y Shi		Ammon Irwin	St
1 Preservation - PM	RC - Surface Coat		.M.			2	Basalt		R
1 Preservation - PM	RC - Surface Coat					Moretand	12	Alridge Caribou Range	4
1 Preservation - 1R	RC - 1R Thin Restoration		snake		Pingrap	Black	kfoot	Caribo	
1 Preservation - 1R	RC - 1R Thi				Filigiee	5 Det Hall	Fort Hal	Nationa	ii -
1 Preservation - 1R	RC - 1R Thi Work F	'lan lists	River		Aberrieen		LR.	Wayan	-
1 Restoration	RC - 3R Cra		Plain	Arb	on Crossing	Chubbuck	k Fiver	Chesterfield Th	ayı
1 Restoration	RC - 3R CR • Yea	r		American Fa		Pocatell	0	Range	bu
1 Restoration	1 Restoration RC - 3R CR Treatment 1 Restoration RC - 3R Gri Cost	atmont	* Minidoka	H			hkom	Bancroft	6
1 Restoration		aimeni	>**	Yalo			Springs	Soda Springs	
1 Restoration		et	30)	Rockland	Arin	Port	neuf Telluride	
1 Preservation - PM	RC - Surfac			\sim	Arbon	Dairy Cr	reek Ra	nge	vn
1 Restoration		ation	(N	Sublet	t Deep Creek	20	Camb	oridge Thatcher	11a
1 Destoration			Mai	Range	Mountains		1 0	xford Barno Montpe	He
Restoration	RU - SR URADS/RADS			00	Holbrook	1	alad City	Mink Creek	4

Comparing Scenarios: Compare Analysis Methods

Validating the Impact-BMS Example

Performance Management: Evaluate impact of bridge maintenance/preservation activities on bridge element condition rating (Project/Bridge Level)

STRUCTURE NO: 700016

Improving Analysis through Research

- Meaningful Research results dependent on good data sets
- Accurately capturing details of completed Maintenance and Preservation work completed is critical for validating treatment effectiveness and timing
- Decision trees and models can be adjusted
- Continuous validation and updating process based on performance data

Enhancing AMS results through Trade-off Analysis

- Need to be able to analyze tradeoffs between competing objectives...
- Multi-criteria and efficient surfaces

Impact Analysis

Evaluate Impact on Bridge, Pavement and Overall System

Closing Thoughts

- MAP-21 is a Game Changer!
- The Future is about Performance
- Robust Systems are Critical for Achieving Performance Goals
- "Preservation" is actually in Law!
- Leverage AMS Analytics & Research to validate Pavement Preservation Benefits

Steve Varnedoe, P. E.

Senior Director, Relationship Management

- e-mail: svarnedoe@agileassets.com
- Office: 919-573-5226
- Mobile: 919-812-5278
- web: www.agileassets.com

"The Agency Infrastructure Asset Management Specialists"

